

FacetE: Exploiting Web Tables for Domain-Specific Word Embedding Evaluation

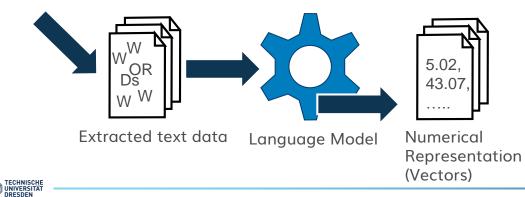
Michael Günther, Paul Sikorski, Maik Thiele, and Wolfgang Lehner

DBTest '20 Workshop at SIGMOD 2020

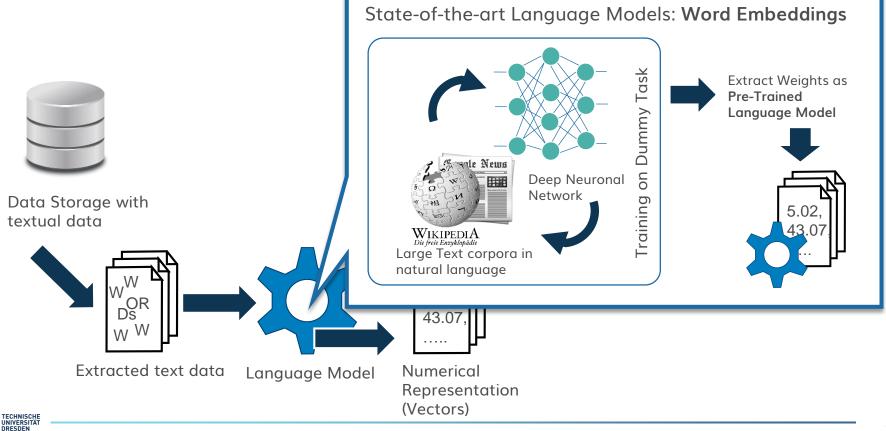
19.06.2020

NLP Systems Workflow

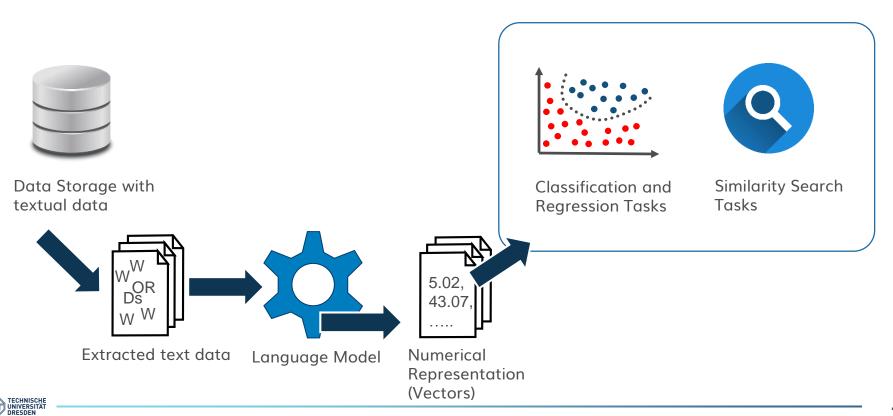
Data Storage with textual data



NLP Systems Workflow



NLP Systems Workflow



Word Embedding for Systems

Dresden Database

ML Systems

Database Systems

- Utilize implicitly encoded knowledge from large text corpora
- Capture sematic similarities of text values

- Semantic text similarity queries
- Data exploration
- Data integration

Information Retrieval Systems

- Semantic search
- Query Expansion
- Multi-lingual search

Choice of the word embedding model is crucial for the performance!

Evaluation of Word Embedding Models

Word Similarity

 Similar Words by cosine similarity of word vectors

 $sim_{cos}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}|| \cdot ||\mathbf{y}||}$

Example: most similar to "king"?
 → prince, man, and queen

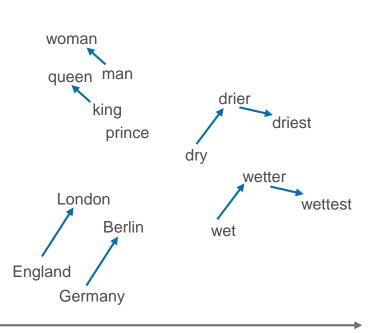
Analogy Queries

NIVERSITAT

• Retrieve Similar Relations $a - b \approx c - ?$

<u>3CosAdd</u>: $\underset{d \in V}{\arg \max sim_{cos}}(d, c - a + b)$

Example: man – woman ≈ king - ?
 → queen



Schematic Representation of Word Vectors

Evaluation of Word Embedding Models

Similarity Eval*

Analogy Eval*

Common Similarity Datasets

- WS-353 353 word pairs of general domain knowledge quantifying semantic relatedness
- SimLex-999 999 word pairs of general domain knowledge quantifying semantic similarity

Depend on human notion of similarity \rightarrow Require human labeling effort

Common Analogy Query Datasets

- Google Analogy 550 semantic and syntactic relations, mostly city-country relations
- MSR 8,000 analogies of 800 syntactic relations

Facts of general domain knowledge → Automatic extraction possible

UNIVERSITÄT

Embedding Model		WS353		RW	
CBOW		57.2		32.5	
SkipGram		62.8		37.2	
Embedding Model	S	emantic	S	yntactic	Total
Embedding Model CBOW		emantic 7.3		Syntactic 8.9	Total 63.7
	5		6		

* Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

Evaluation of Word Embedding Models

Common Similarity Datasets

- WS-353 353 word pairs of general domain knowledge quantifying semantic relatedness
- SimLex-999 999 word pairs of general domain knowledge quantifying semantic similarity

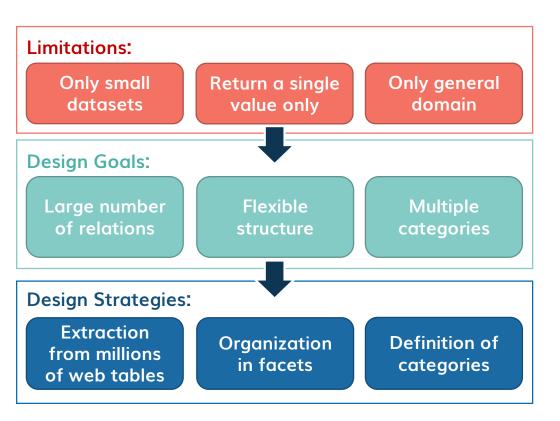
Depend on human notion of similarity \rightarrow Require human labeling effort

Common Analogy Query Datasets

- Google Analogy 550 semantic and syntactic relations, mostly city-country relations
- MSR 8,000 analogies of 800 syntactic relations

Facts of general domain knowledge → Automatic extraction possible

UNIVERSITÄT



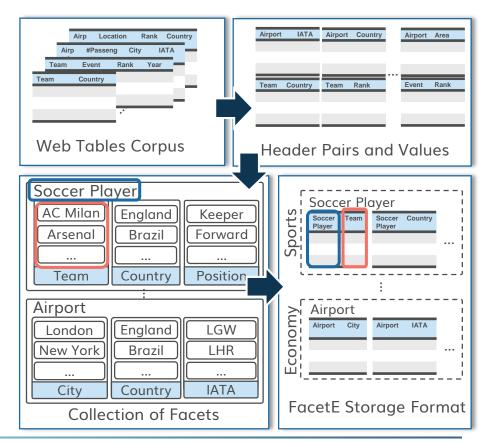
Dataset Design

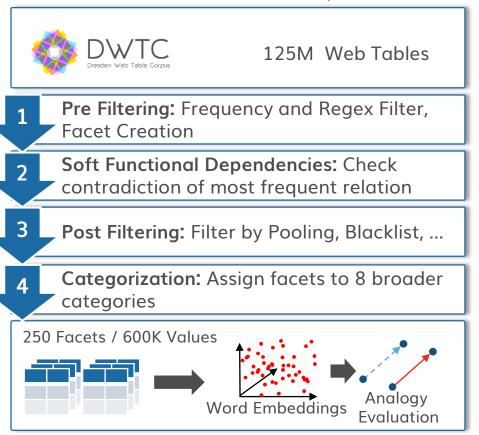
Data Source: Web Tables

- Large amount of knowledge
- General enough to be expected in pre-trained word embedding models
- Redundancy allows to exclude temporary facts (e.g. time dependent facts like home soccer team to visiting team)

Target Design: Facets

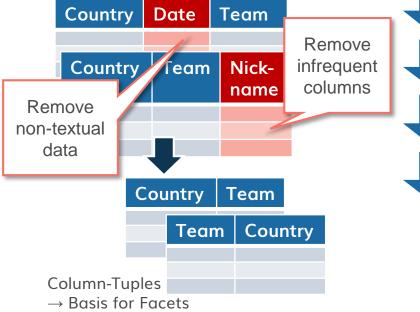
- Each Facet F: 0→V assigns objects (e.g. Soccer Player) to values (e.g. Teams)
- Allows flexible construction of application specific evaluation datasets
- More flexible then hierarchical categorization

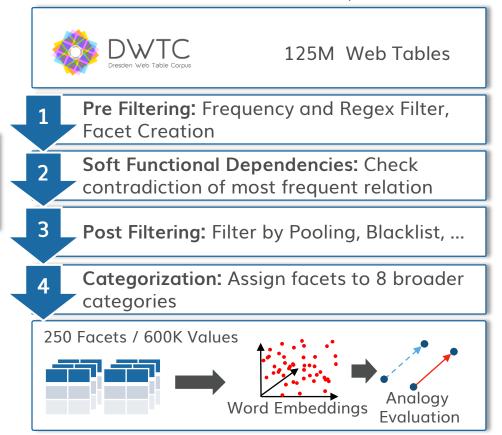


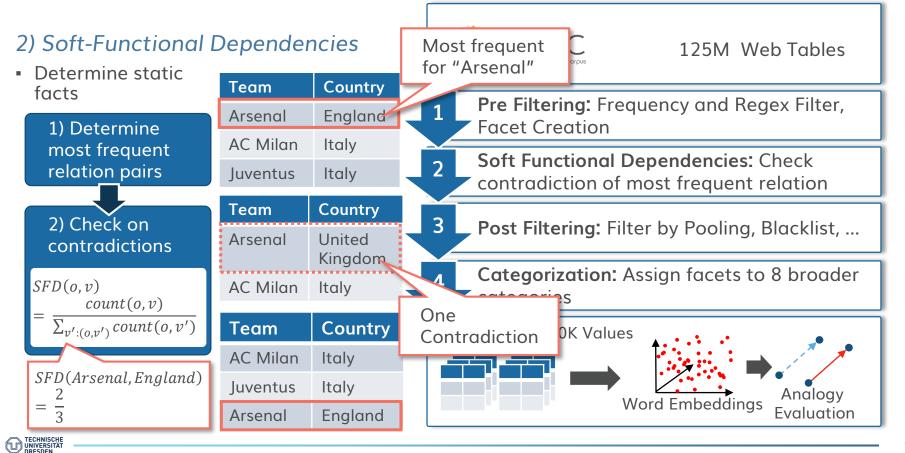


1) Pre-Filtering

 Filters infrequent and non-textual data of English tables

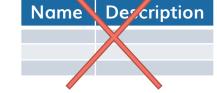




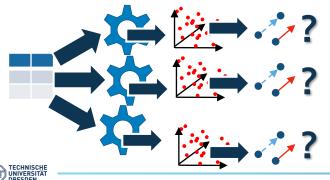


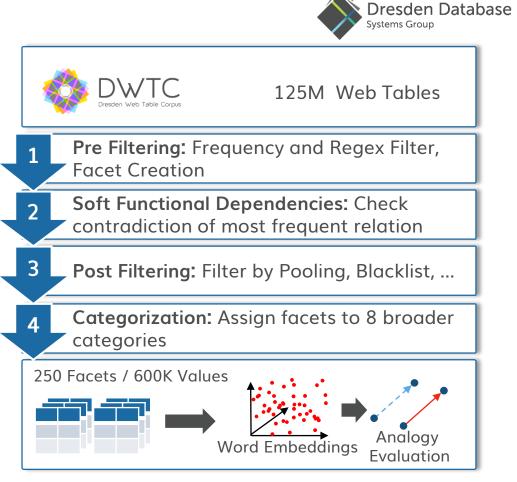
3) Post-Filtering

Blacklists
 Remove too generic facets



 Word Embedding Pooling Retain only facets modeled by at least one word embedding model





Team

AC Milan

Juvertus

Arsenal

#Keywords #Keywords

Keywords for

categories

UNIVERSITÄT

Evaluation

4) Categorization

 Assign each of the 250 facets on of 8 broader categories (e.g. geographic, music, sports, ...)

Country

Italy

Italy

Word Embedding

Model

Similarity to Keywords

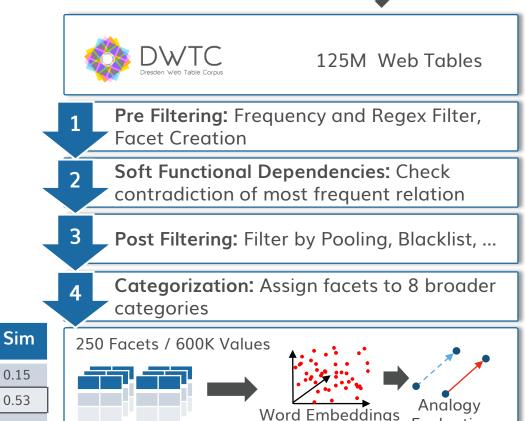
England

Cat.

Music

Sports

....



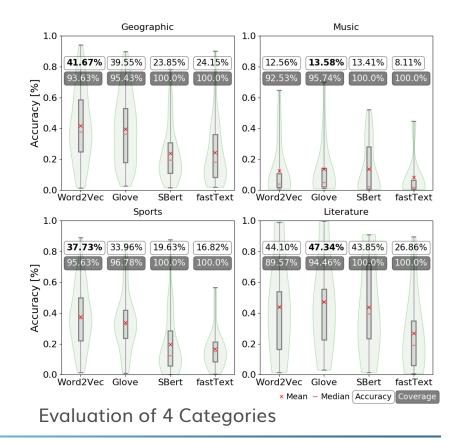
Evaluation of Categories

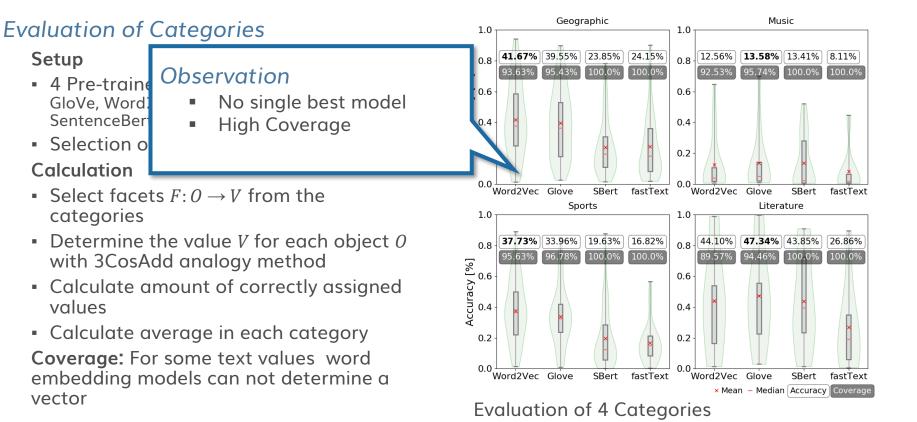
Setup

- 4 Pre-trained word embedding models: GloVe, Word2Vec-SkipGram, fastText, SentenceBert
- Selection of 4 FacetE categories

Calculation

- Select facets $F: O \rightarrow V$ from the categories
- Determine the value V for each object O with 3CosAdd analogy method
- Calculate amount of correctly assigned values
- Calculate average in each category
 Coverage: For some text values word embedding models can not determine a vector





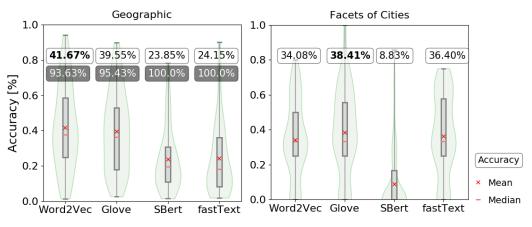
Evaluation of a Single Object Set

Setup

- 4 Pre-trained word embedding models: GloVe, Word2Vec-SkipGram, fastText, SentenceBert
- Selection of all facets for cities
- Calculation

UNIVERSITÄT

- Determine the value V for each object 0 with 3CosAdd analogy method
- Calculate amount of correctly assigned values for each city name
- Calculate average across all objects



Evaluation of a Single Object Set - Cities

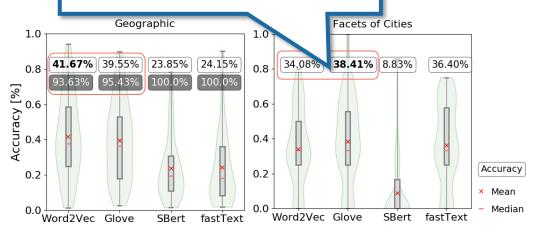
Evaluation of a Single Object Set

Setup

- 4 Pre-trained word embedding models: GloVe, Word2Vec-SkipGram, fastText, SentenceBert
- Selection of all facets for cities
- Calculation
- Determine the value V for each object 0 with 3CosAdd analogy method
- Calculate amount of correctly assigned values for each city name
- Calculate average across all objects

Observation

Word2Vec performs better on geographic data, however GloVe has a better representation of cities



Evaluation of a Single Object Set - Cities

Conclusion

Web Table Extraction Pipeline

- Web Tables are a good resource for structured relations of general common knowledge
- Pipeline is able to process millions of tables
- \rightarrow Reusable for other table corpora

Facet Structure

UNIVERSITÄT

- Enables flexible construction of evaluation datasets
- Evaluation of different granularity Single Facts (e.g. City → Country), Objects (e.g. Cities) or Domains (e.g. Geographic)

Evaluation of Common Word Embedding Models

- Large differences in accuracy values on different domains
- No best model for all cases

FacetE Dataset: https://www.kaggle.com/guenthermi/facete

