
From HyPer to Hyper
Integrating an academic DBMS into a leading analytics and business intelligence platform

Tobias Muehlbauer, tmuehlbauer@tableau.com
Jan Finis, jfinis@tableau.com

http://tableau.com
http://tableau.com


The Story of Hyper



2008: HyPer started as a research project at
Technical University of Munich

Academic Success: More than  50 peer-reviewed 
publications and several awards

Commercial spin-off

March 2016: Tableau acquires HyPer (HyPer⇨ Hyper)

Tableau Europe R&D center in Munich
with over 30 full-time employees

Early 2018: Hyper replaces Tableau Data Engine in 
existing on-prem and SaaS products

Mid 2018: Tableau Prep launches
with Hyper as its processing engine

2020: Hyper as a general-purpose
Database Service in the Tableau Platform

Mid 2019: Hyper API exposes full Hyper SQL capabilities 
to partners and customers 



Context: One Size Fits All?

One size does not fit all, but what about data lag and disconnect?



Context: A Changing Hardware Landscape

In order to leverage modern hardware, databases need to change.



The Idea Behind Hyper



HyPer
the computational database

OLTP

OLAP

OBRP

Online Transactional Processing

Online Analytical Processing

Online Beyond Relational Processing

one system    one state    no tradeoffs    no delays

one system for your transactional, analytical,
and beyond relational workloads

simultaneously process all your workloads
on efficient snapshots of one single state

no tradeoffs: ACID-compliant transactions
and full SQL query processing, including
extensions for graph- and data-mining,
on internal data and on external sources
such as Hadoop HDFS

information at your fingertips: no delays
from extract transform load (ETL) phases and
highest performance in all your workloads
enabled by our efficient transaction and
query just in time compilation technology
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Inside Hyper
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Figure 6: Integration of Data Blocks in our query engine: vectorized scans on Data Blocks and uncompressed
chunks on the left share the same interface and evaluate SARGable predicates on vectors of records using
SSE/AVX2 SIMD instructions (cf., Section 4.2). Matches are pushed to the query pipeline tuple at a time.
The original JIT-compiled scan on the right evaluates predicates as part of the query pipeline.

resented in p di↵erent ways, the resulting number of code
paths is pn; e.g., for only two attributes and six di↵erent
representations there are 36 generated code paths. While
one can argue that not all of these combinations will ac-
tually occur in a relation1, a small number of combinations
will drastically increase code size and thus compilation time.
This impact is shown in Figure 5, which plots the compila-
tion time of a simple select * query on a relation with 8
attributes and a varying number of storage layout combina-
tions.

Given the exploding compile time, we thus turned to call-
ing pre-compiled interpreted vectorized scan code for vectors
of say 8K tuples. The returned tuples are then consumed

tuple-at-a-time by the generated code and pushed into the
consuming operator:

while (!state.done()) {
// Call to pre-compiled interpreted vectorized scan
scan(result,state,requiredAttributes,restrictions);
for (auto& tuple:result) {
auto a0=tuple.attributes[0];
auto a3=tuple.attributes[1];
// Check non-SARGable restrictions and push a0,a3
// into consuming operator
...

} }

Using the pre-compiled interpreted vectorized scan code,
compile times can be kept low, no matter how many storage
layout combinations are scanned (cf., Figure 5). Addition-
ally, SARGable predicates can be pushed down into the scan
operator where they can be evaluated on vectors of tuples.

4.1 Integration in HyPer
Our JIT-compiling query engine is integrated in our full-

fledged main-memory database system HyPer that supports
SQL-92+ query processing and ACID transactions. As il-
lustrated in Figure 6, vectorized scans on hot uncompressed
chunks and compressed Data Blocks share the same interface
in HyPer and JIT-compiled query pipelines are oblivious to
the underlying storage layout combinations.

1Our proposed compressed Data Blocks use over 50 di↵erent
layouts for the lineitem relation of TPC-H scale factor 100.

In HyPer, vectorized scans are executed as follows: First,
for each chunk of a relation a determination is made as to
whether or not the block is frozen, i.e., compressed. If yes,
then a Data Block scan is initiated, if not, a vectorized scan
on uncompressed data is initiated. Next, the JIT-compiled
scan glue code calls a function that generates a match vec-
tor containing the next n positions of records that qualify
restrictions. n is the vector size and determines how many
records are fetched before each of these records are pushed
to the consuming pipeline one tuple at a time. The ratio-
nale for splitting the scan into multiple invocations is cache
e�ciency: As the same data is accessed multiple times when
finding the matches, potentially unpacking these matches, if
compressed, and passing them to the consumer, the vector-
wise processing in cache-friendly pieces minimizes the num-
ber of cache misses (see Appendix A for an experiment with
di↵erent vector sizes). In HyPer, the vector size is set to
8192 records. After finding the matching positions, scan
glue code on a cold compressed Data Block calls a function
that unpacks the matches into temporary storage, and a scan
on an uncompressed chunk copies the matching required at-
tributes into temporary storage. Finally, the tuples in the
temporary storage are pushed to the consuming operator
tuple at a time. Even though vectorized scans are indeed
copying more data, our evaluation of vectorized scans in our
JIT-compiling query engine shows that most of the time the
costs for copying can be neglected and vectorized predicate
evaluation can outperform tuple-at-a-time evaluation.
In this respect, Q1 and Q6 of TPC-H exemplify two ex-

tremes: for Q1 most tuples qualify the scan restriction and
vectorized scans copy almost all of the scanned data. As
such, the runtime of Q1 su↵ers by almost 50% (cf., Ap-
pendix). Note that without predicates, our vectorized scan
uses an optimization whereby it does not copy data if all tu-
ples of a vector match and performance is not degraded; due
to the uniform value distribution of the restricted attributes,
this optimization is not helpful if predicates are SARGd. For
Q6, on the other hand, only a small percent of tuples qualify
the scan restriction. On uncompressed data, the vectorized
evaluation of predicates improves runtime with vectorized
scans over JIT-compiled scans up to 2.3⇥ (cf., Appendix F).

Query Compilation & Vectorized Scans
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Figure 1: Multi-version concurrency control example: transferring $1 between Accounts (from ! to) and

summing all Balances (⌃)

is also the basis of our cheap serializability check, which ex-
ploits the structure of our versioning information. We fur-
ther retain the very high scan performance of single-version
systems using synopses of positions of versioned records in
order to e�ciently support analytical transactions.

In particular, the main contributions of this paper are:

1. A novel MVCC implementation that is integrated into
our high-performance hybrid OLTP and OLAP main-
memory datbase system HyPer [21]. Our MVCCmodel
creates very little overhead for both transactional and
analytical workloads and thereby enables very fast and
e�cient logical transaction isolation for hybrid systems
that support these workloads simultaneously.

2. Based upon that, a novel approach to guarantee seri-
alizability for snapshot isolation (SI) that is both pre-
cise and cheap in terms of additional space consump-
tion and validation time. Our approach is based on
an adaptation of Precision Locking [42] and does not
require explicit read locks, but still allows for more
concurrency than 2PL.

3. A synopses-based approach (VersionedPositions) to re-
tain the high scan performance of single-version sys-
tems for read-heavy and analytical transactions, which
are common in today’s workloads [33].

4. Extensive experiments that demonstrate the high per-
formance and trade-o↵s of our MVCC implementation.

Our novel MVCC implementation is integrated into our
HyPer main-memory DBMS [21], which supports SQL-92
query and ACID-compliant transaction processing (defined
in a PL/SQL-like scripting language [20]). For queries and
transactions, HyPer generates LLVM code that is then just-
in-time compiled to optimized machine code [31]. In the

past, HyPer relied on single-version concurrency control and
thus did not e�ciently support interactive and sliced trans-
actions, i.e., transactions that are decomposed into multiple
tasks such as stored procedure calls or individual SQL state-
ments. Due to application roundtrip latencies and other
factors, it is desirable to interleave the execution of these
tasks. Our novel MVCC model enables this logical concur-
rency with excellent performance, even when maintaining
serializability guarantees.

2. MVCC IMPLEMENTATION
We explain our MVCC model and its implementation ini-

tially by way of an example. The formalism of our serializ-
ability theory and proofs are then given in Section 3. Fig-
ure 1 illustrates the version maintenance using a traditional
banking example. For simplicity, the database consists of
a single Accounts table that contains just two attributes,
Owner and Balance. In order to retain maximum scan per-
formance we refrain from creating new versions in newly
allocated areas as in Hekaton [8, 23]; instead we update in-
place and maintain the backward delta between the updated
(yet uncommitted) and the replaced version in the undo
bu↵er of the updating transaction. Updating data in-place
retains the contiguity of the data vectors that is essential for
high scan performance. In contrast to positional delta trees
(PDTs) [15], which were designed to allow more e�cient
updates in column stores, we refrain from using complex
data structures for the deltas to allow for a high concurrent
transactional throughput.
Upon committing a transaction, the newly generated ver-

sion deltas have to be re-timestamped to determine their
validity interval. Clustering all version deltas of a trans-
action in its undo bu↵er expedites this commit processing
tremendously. Furthermore, using the undo bu↵ers for ver-

Fast MVCC

Morsel-Driven Parallelism: A NUMA-Aware Query
Evaluation Framework for the Many-Core Age

Viktor Leis⇤ Peter Boncz† Alfons Kemper⇤ Thomas Neumann⇤

⇤ Technische Universität München † CWI
⇤ {leis,kemper,neumann}@in.tum.de † p.boncz@cwi.nl

ABSTRACT
With modern computer architecture evolving, two problems con-
spire against the state-of-the-art approaches in parallel query exe-
cution: (i) to take advantage of many-cores, all query work must
be distributed evenly among (soon) hundreds of threads in order to
achieve good speedup, yet (ii) dividing the work evenly is difficult
even with accurate data statistics due to the complexity of modern
out-of-order cores. As a result, the existing approaches for “plan-
driven” parallelism run into load balancing and context-switching
bottlenecks, and therefore no longer scale. A third problem faced
by many-core architectures is the decentralization of memory con-
trollers, which leads to Non-Uniform Memory Access (NUMA).

In response, we present the “morsel-driven” query execution
framework, where scheduling becomes a fine-grained run-time task
that is NUMA-aware. Morsel-driven query processing takes small
fragments of input data (“morsels”) and schedules these to worker
threads that run entire operator pipelines until the next pipeline
breaker. The degree of parallelism is not baked into the plan but can
elastically change during query execution, so the dispatcher can re-
act to execution speed of different morsels but also adjust resources
dynamically in response to newly arriving queries in the workload.
Further, the dispatcher is aware of data locality of the NUMA-local
morsels and operator state, such that the great majority of execu-
tions takes place on NUMA-local memory. Our evaluation on the
TPC-H and SSB benchmarks shows extremely high absolute per-
formance and an average speedup of over 30 with 32 cores.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

Keywords
Morsel-driven parallelism; NUMA-awareness

1. INTRODUCTION
The main impetus of hardware performance improvement nowa-

days comes from increasing multi-core parallelism rather than from
speeding up single-threaded performance [2]. By SIGMOD 2014

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
ACM 978-1-4503-2376-5/14/06.
http://dx.doi.org/10.1145/2588555.2610507 .
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Figure 1: Idea of morsel-driven parallelism: R 1A S 1B T

Intel’s forthcoming mainstream server Ivy Bridge EX, which can
run 120 concurrent threads, will be available. We use the term
many-core for such architectures with tens or hundreds of cores.

At the same time, increasing main memory capacities of up to
several TB per server have led to the development of main-memory
database systems. In these systems query processing is no longer
I/O bound, and the huge parallel compute resources of many-cores
can be truly exploited. Unfortunately, the trend to move memory
controllers into the chip and hence the decentralization of mem-
ory access, which was needed to scale throughput to huge mem-
ories, leads to non-uniform memory access (NUMA). In essence,
the computer has become a network in itself as the access costs of
data items varies depending on which chip the data and the access-
ing thread are located. Therefore, many-core parallelization needs
to take RAM and cache hierarchies into account. In particular, the
NUMA division of the RAM has to be considered carefully to en-
sure that threads work (mostly) on NUMA-local data.

Abundant research in the 1990s into parallel processing led the
majority of database systems to adopt a form of parallelism in-
spired by the Volcano [12] model, where operators are kept largely
unaware of parallelism. Parallelism is encapsulated by so-called
“exchange” operators that route tuple streams between multiple
threads each executing identical pipelined segments of the query
plan. Such implementations of the Volcano model can be called
plan-driven: the optimizer statically determines at query compile-
time how many threads should run, instantiates one query operator
plan for each thread, and connects these with exchange operators.

In this paper we present the adaptive morsel-driven query execu-
tion framework, which we designed for our main-memory database
system HyPer [16]. Our approach is sketched in Figure 1 for the
three-way-join query R 1A S 1B T . Parallelism is achieved
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From HyPer to Hyper: Challenges
Support
• Limited support provided up to 30 months after major product version release
• Compare performance across releases and database engines
• Semantic differences

Infrastructure
• Windows, Linux, and macOS
• Small laptops to large-scale servers and Cloud deployments

Workload
• Long tail of query complexity generated by Tableau
• Wide variety of data set characteristics



Tableau Workloads



What Tableau Workloads Look Like

• Most queries are “small”: Only 0.5% larger than 5KB SQL Text

• But: Huge outliers

• Largest query in our data set: 6.7MB
• Largest query we saw so far: 27MB

And that’s not all due 
to constant strings…



Need a query plan visualizer? https://github.com/tableau/query-graphs/

https://github.com/tableau/query-graphs/


What Tableau Workloads Look Like
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Replacing Tableau’s 
Old Data Engine



Tableau’s old data engine (TDE):
vector-based engine inspired by MonetDB/X100

First step:  Replace TDE as the backend of all Tableau Products

Goals:
• Deliver performance at scale
• Seamless transition for customers

Replacing Tableau’s Old Data Engine



Having a gold standard is great!

We just ran a lot (60k) of workbooks from 
Tableau Public and compared results.

Simple, measurable goal:
Get results to match for all and be fast,
then we’re done J

TDE: The Gold Standard



Is it really worth to show the same result for all queries?
• Non-deterministic behavior (parallelization!)
• Bugs in TDE

Our attitude changed over time:
1. 100% same results at all cost, customers don’t want their Viz to change!

This is non-negotiable!
2. Well, but what if it changes to be correct?
3. Who said that Visualizations can’t change in the first place?
4. Let’s do the right thing and fix things once and for all!

Challenge: Bug Compatibility?



Is “5/7/2020” April 7 or July 5?
TDE’s strategy: be aggressive finding a valid date. Sounds great! 

But horrible in the relational model!

Silent failure: Sales workbook: More sales in the first 12 days of each months!

Compatibility Curiosity: String to Date Cast

Input TDE
5/7/2020 April 7, 2020
15/7/2020 July 15, 2020

Hyper
April 7, 2020
NULL



Continuous performance improvements past launch

T
D
E

T
D
E

T
D
E

T
D
E

T
D
E

T
D
E

T
D
E

T
D
E

T
D
E

T
D
E

Im
pr

ov
em

en
t 

ov
er

 T
D

E



Testing Hyper



We started with the SQLite test suite
• Added own test cases for features
• Added regression tests for defects
• Added fine grained expectations 

(e.g., constant folding)

How to execute the tests?
• First: Own Hyper front end that parses the file and executes the queries:
• Problem: Server / protocol code not tested

• Second: Client (based on libpq) that parses the file and sends queries to a server
• Problem: Harder to debug, test driver is not same process

SQL Level Testing query N expectConstantResult
SELECT DATE '2001-09-28' + INTEGER '7'
----
2001-10-05

# DATE + INTEGER -> DATE with overflow
statement error 22003
SELECT DATE '4713-01-01 BC' - 1



Use EXPLAIN statement to test optimizer

Introduce function to scan the own log to test 
for log messages
• Introduce trace settings that allow printing 

specific internals to the log

Special test functions with side effects to 
test further internals
• E.g., a function that allocates thread-local 

memory
• SELECT suicide()

Testing even more with SQL Level Tests

# Deduplication for simple domain queries
query S
EXPLAIN SELECT * FROM 
(SELECT a FROM t GROUP BY 1) t1, 
(SELECT a FROM t GROUP BY 1) t2
----

executiontarget(1)         

join(2)               
bnl

explicitscan(3) explicitscan(6)->(4)

groupby(4)                        

tablescan(5)                       
t                                  



SQL vs. C++ Unit Tests

SQL
Easy to write, usually very succinct

No recompilation needed

In vivo: Can run code in specific query contexts

Good test failure reporting

Can update expected test results automatically

Resembles customer usage of the system

C++
Only test the code in question,

not the whole SQL layer

Runs faster

Big controversy!



SQLite tests are great, but they can’t 
simulate load from multiple 
connections

Solution: Loadtest DSL
• open connection
• Embed SQLite test statement
• Execute code blocks in parallel
• Loops

Beyond SQL Testing exec CREATE DATABASE mytestdb;

connection mytestdb user=bob {
repeat 100 {

exec CREATE TABLE foo AS  
(SELECT x FROM            
generate_series(1,1e6) x);

parallel 10 {
exec UPDATE foo SET x = x+10 

WHERE x % 2 = 0;
} and 2 {

test {
query N
SELECT SUM(x) FROM foo     
WHERE x % 2 = 1;
----
1234567

}
}

}



1. Goal: Check for compatibility with TDE
I. Correctness and perf
II. A/B Test on the 60k Public Workbooks

2. How it works
I. Starts up Hyper
II. Loads a workbook 

(thus sending queries to Hyper)
III. Checks number of marks 

/ mark values and records times
IV. A/B test between old and new branch

A/B Testing: MaxPerf / QueryRunner
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1. Measure perf on every commit
2. If perf regresses, file a defect
3. Make sure it’s not just noise
4. If perf improves, make it the new 

expectation

Automatic Regression Testing



1. Use a fuzzer (e.g., AFL)
2. Feed it the SQL grammar
3. Let it run for a long time

Fuzzing

Found several vulnerabilities and defects with fuzzing!



1. Enable all compiler warnings and make them errors
–Wall –Wextra –Werror -Woverloaded-virtual -Wunreachable-code-return…

2. Keep code clean: clang-format, clang-tidy

3. Clang static analyzers
• Address sanitizer
• Thread sanitizer and Memory sanitizer
• Third party libraries must also be re-built!

• Undefined behavior sanitizer
• …

4. Code coverage

Static Code Analysis



Flaky test: A test that sometimes passes and sometimes fails
Worst cases: It succeeds 99,9% of the time

• Don’t let flaky tests build up!
• Don’t get into the habit of muting flaky tests!
• Treat them as a high priority defects! They kill dev productivity!

Root causes:
• Real defect
• Bad test; usually dependent on timing or other 

Flaky Tests: The root of all (test) evil



Lessons Learned



When benchmarking a system …
• Contact the vendor
• Report bugs
• Share your benchmark ahead of time, if possible
• Allows vendors to give feedback, double check the validity
• Good chance to increase the quality of your benchmark

• Ask the vendor how to configure the system
• Don’t let misconfigured benchmarks impact the credibility of your hard work

• Shout-out to Andrew C. from Brown University

Benchmark Responsibly!



Generated workloads are real
I. More and more tools generate queries
II. Queries are way more complex 

than hand-written TPC-X queries
III. Plenty of interesting (and novel!) problems

lurking in other workloads

Public BI Benchmark from CWI
• https://github.com/cwida/public_bi_benchmark
• Ghita, Tomé, Boncz, White-box Compression: Learning and Exploiting Compact Table 

Representations, CIDR’20
• Based on Tableau Public data

There is more than TPC-X

https://github.com/cwida/public_bi_benchmark


Build a system; not a throw-away prototype
• Much more rewarding, longer lasting sense of achievement
• Easier to build upon previous work
• Results closer to reality (micro benchmarks leave out crucial parts)

Follow standards (e.g., SQL, PostgreSQL)
• Easy test adaption, easier benchmarking

Build that system as if it was for production
• Test driven development is great; 

defects could make your results invalid!
• Easier to adapt a stable system to the next benchmark
• There is a real chance to get your system into production in the end
• OS compatibility (Some perf hacks are highly non-portable!)

Build your system for production



Conclusion



Academic Projects can make it into production
• Design to become a product (it’s fun!)
• Replacing an old system: great gold standard, hard to beat in all cases

TPC-X is not everything!
• Experiment with more diverse workloads, real world queries are complex

Various layers of testing required
• Don’t forget stress testing, don’t regress, and avoid flaky tests

Benchmark responsibly

Try out Hyper API! tabsoft.co/hyperapi

Conclusion

http://tabsoft.co/hyperapi



