
SparkFuzz:
Searching Correctness Regressions in
Modern Query Engines

Bogdan Ghit, Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz*

June 19 - DBTest 2020

*

ENTERPRISE CLOUD SERVICE

UNIFIED DATA SERVICE

DATA SCIENCE WORKSPACE

UNIFIED DATA ANALYTICS PLATFORM

DATA SCIENTISTS ML ENGINEERS DATA ANALYSTSDATA ENGINEERS

3500+ resolved tickets

Introduction

Fast and expressive data processing
engine

▪ distributed computing
▪ rich APIs

▪ including SQL
▪ large community

Started at UC Berkeley in 2009
▪ 2010 - open sourced
▪ 2014 - top level project
▪ 2020 - v3 released (10 years!)

June 2002 v 3.0.0 releasedApache Spark

SparkFuzz proposal

1. Leverage fuzz testing techniques
a. to complement SQL testing
b. automate bug discovery

2. Design of a toolkit for SQL engines
a. model for randomized

i. DDL, data, and queries
b. A runner and evaluator

3. Applicability of coverage metrics
a. as test stop gaps
b. reducing time (and costs)
c. enabling more testing dimensions

Test oracle (stable)

SparkFuzz

query

SUT (dev)

DDL and data generation

Automated dataset generation
▪ by randomly sampling

▪ supported data types
▪ parameter ranges

▪ Producing valid schemas

▪ Populating datasets

...
...

...

...

BigIntBoolean

Timestamp

Decimal

FloatInteger

SmallInt

String

Choose a data type

Random number of rows

Random number of columns

Random number of tables

Random partition columns

Recursive query model w/ a probabilistic profile

Operators and features
annotated with:
Independent weights

▪ Optional clauses

Inter-dependent weights
▪ Join types
▪ Select functions

SQL Query

WITH

FROMUNION

SELECT

Functions

Constant

GROUP BY
ORDER BY

Table

Column

Alias

Query

Clause

Expression

JOIN

WHERE
10%

10%

50%
10%

Query produced in a small dataset with 2 tables of 5x5 size

▪ Within 10 queries, this query triggered an exception
▪ Related to COALESCE flattening

Query and regression example

SELECT COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3) AS int_col,
 IF(NULL, VARIANCE(COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)),
 COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)) AS int_col_1,
 STDDEV(t2.double_col_2) AS float_col,
 COALESCE(MIN((t1.smallint_col_3) - (COALESCE(t2.smallint_col_3, t1.smallint_col_3,
 t2.smallint_col_3))), COALESCE(t2.smallint_col_3, t1.smallint_col_3,
t2.smallint_col_3),
 COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)) AS int_col_2
FROM table_4 t1
INNER JOIN table_4 t2 ON (t2.timestamp_col_7) = (t1.timestamp_col_7)
WHERE (t1.smallint_col_3) IN (CAST('0.04' AS DECIMAL(10,10)), t1.smallint_col_3)
GROUP BY COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)

Correctness regression example [SPARK-16633]
Using constant input values breaks the the LEAD function

▪ Spark [1.0, 696, -871.81, -64.98, -349]
▪ PostgreSQL [1.0, 696, -871.81, NULL, -349]

SELECT (t1.decimal0803_col_3) / (t1.decimal0803_col_3) AS decimal_col,

 CAST(696 AS STRING) AS char_col, t1.decimal0803_col_3,

 (COALESCE(CAST('0.02' AS DECIMAL(10,10)),

 CAST('0.47' AS DECIMAL(10,10)),

 CAST('-0.53' AS DECIMAL(10,10)))) +

 (LEAD(-65, 4) OVER (ORDER BY (t1.decimal0803_col_3) / (t1.decimal0803_col_3),

 CAST(696 AS STRING))) AS decimal_col_1,

 CAST(-349 AS STRING) AS char_col_1

FROM table_16 t1
WHERE (943) > (889)

Query operator coverage analysis

In 15m (500 queries), reaches near max coverage

Continuous Integration pipeline

10

- Impact
- Scope
- Correlation
- Confirm?

Failure

Regression
- Minimize
- Drill-down
- Profile
- Compare
- Validate

Events Re-test Alert

Classify Root-cause

Correctness

Performance

SparkFuzz

Conclusion and future work

▪ Prevented SQL correctness errors reaching production
▪ complementing the testing practices

▪ Runtime operator coverage metrics found applicable
▪ For testing code changes rapidly
▪ With a degree of coverage

▪ Future work
▪ Improve the metric coverage to include operator chaining
▪ Update the model generation to use Spark AST grammar directly

Thanks, questions?

Bogdan Ghit, Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz

Feedback: Nicolas.Poggi@databricks.com

SparkFuzz: Searching Correctness Regressions

